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Abstract
A general procedure for the reduction of Cartesian electric and magnetic
multipole tensors to symmetric traceless ones is presented. In the static case
this procedure applies independently in each order of the multipole expansion,
whereas in the dynamic case the process of reduction is recursive. The
expressions of the reduced multipole tensors differ in the dynamic case from
the static ones by toroidal moments and mean radii of various orders.

PACS numbers: 03.50.De, 41.20.−q

1. Introduction

The multipole expansion of the vector, A, and scalar, �, potentials is an important tool for
the study of the electromagnetic field generated by charge distributions, including many
applications. A full and systematic treatment in spherical coordinates is given in most
textbooks (see, e.g., [1]). In Cartesian coordinates, the problem is presented fully only in
the static case [2–8], while the treatment of the dynamic case is given only for the lowest
order multipoles. The main difficulty in the case of Cartesian coordinates is the procedure of
reduction of the nth-order multipole tensors to symmetric traceless ones to obtain in this way
a description of multipoles in terms of irreducible rotation group tensors. A full treatment of
the multipole expansion in the Cartesian case would be warranted at least by concerns about
methodological completeness.

In this paper we present the general procedure for the reduction of multipole tensors
represented by Cartesian coordinate components to symmetric traceless ones in the static and
dynamic cases. In section 2, we present basic formulae for multipole expansions. We give some
examples of the use of these formulae for treating fundamental questions of electrodynamics
such as multipole expansions of charge and current distributions and radiation fields. In
section 3, following an earlier work of the author [6], the reduction procedure in the static
case is presented. Some examples of utilization of the reduced multipole tensors to represent
the static fields and interaction energies are given. The reduction of the electric and magnetic
multipole tensors in the dynamic case is treated in section 4. The transformations implied in
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the reduction procedure are defined such that the electromagnetic potentials are altered only by
gauge transformations. This implies a specific feature of the dynamic case: the redefinitions of
the multipole tensors in the lower n < N orders induced by the reduction of tensors in a given
order N. Summarizing the results for the dynamic case, in section 5 is given a simple example
of reduction beginning from the electric octupole, and it is shown that the redefinitions of the
electric dipole and quadrupole moments are obtained by adding the time derivatives of toroid
dipole and quadrupole moments, respectively.

2. Basic formulae for the multipole expansions

Let us consider charge ρ(r, t) and current j(r, t) distributions having supports included in
a finite domain D. Choosing the origin O of the Cartesian coordinates in D, and using the
notation ei for the orthogonal unit vectors along the axes, the retarded scalar and vector
potentials at a point outside D, r = xiei , are

�(r, t) = 1

4πε0

∫
ρ(ξ, t − R/c)

R
d3ξ A(r, t) = µ0

4π

∫
j(ξ, t − R/c)

R
d3ξ (1)

where R = r − ξ. The Taylor series expansion of the function f (R) is

f (R) =
∞∑
n=0

(−1)n

n!
ξi1 · · · ξin∂i1...inf (r) =

∞∑
n=0

(−1)n

n!
ξn · ∇nf (r) (2)

where

∂i1...in = ∂

∂xi1
· · · ∂

∂xin

and an is the n-fold tensorial product a ⊗ · · · ⊗ a : (a ⊗ · · · ⊗ a)i1...in = ai1 · · · ain . Denoting
by T(n) an n-order tensor, A(n) · B(m) is an |n−m|-order tensor with the components

(A(n) · B(m))i1...i|n−m| =


Ai1...in−mj1...jmBj1...jm n > m

Aj1...jnBj1...jn n = m

Aj1...jnBj1...jni1...im−n n < m

.

Substituting equation (2) into (1) we get the well-known multipole expansion of the scalar
potential

�(r, t) = 1

4πε0

∞∑
n=0

(−1)n

n!
∇n ·

[
1

r
P(n)(t0)

]
t0 = t − r

c
. (3)

Here,

P(n)(t) =
∫
D

ξnρ(ξ, t) d3ξ

is the nth-order electric multipole tensor.
For the vector potential, we get

A(r, t) = µ0

4π

∞∑
n=0

(−1)n

n!
∂i1...in

[
1

r

∫
D
ξi1 · · · ξinj(ξ, t − r/c) d3ξ

]
. (4)

Equation (4) is similar to (3) for the scalar potential. The definition of the magnetic multipole
tensors implied by equation (4)

µi1...in =
∫
D
ξi1 · · · ξin−1jin(ξ, t) d3ξ
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differs from the usual definition of the magnetic multipole moments

M(n) = n

n + 1

∫
D

ξn × j(ξ, t) d3ξ (5)

where we use the notation

(T(n) × a)i1...in = εinijTi1...in−1iaj .

More explicitly,

Mi1...in = n

n + 1
εinkl

∫
D
ξi1 · · · ξin−1ξkjl d3ξ = n

n + 1

∫
D
ξi1 · · · ξin−1(ξ × j)in d3ξ.

We can recover the latter by generalizing a procedure given in [5] for the static case, which
was used in [7] for representing the multipole expansion (4)

4π

µ0
A(r, t) = ∇ ×

∞∑
n=1

(−1)n−1

n!
∇n−1 ·

[
1

r
M(n)(t0)

]
+

∞∑
n=1

(−1)n−1

n!
∇n−1 ·

[
1

r
Ṗ
(n)
(t0)

]
. (6)

Here we use the superdot notation for the time derivatives.
We will illustrate the usefulness of expansions (3) and (6) by two examples connected to

fundamental questions of electrodynamics.
The multipole expansions of the charge and current densities follow from expansions (3)

and (6) and

ρ(r, t) = −ε0 ��(r, t) j(r, t) = − 1

µ0
� A(r, t)

� f (t − r/c)

r
= −4πf (t − r/c)δ(r)

(
� = �− 1

c2

∂2

∂t2

)
.

Here δ(r) is the Dirac function.
Defining the electric and magnetic polarization intensity vectors,

P(r, t) =
∞∑
n=1

(−1)n−1

n!
∇n−1 · [P(n)(t)δ(r)]

(7)

M(r, t) =
∞∑
n=1

(−1)n−1

n!
∇n−1 · [M(n)(t)δ(r)]

the following relations can be obtained:

ρ = Qδ(r)− ∇ · P j = ∇ × M +
∂P
∂t

(8)

where Q is the total electric charge.
Considering in equation (8) Q = 0, by a straightforward calculation [7], one may

demonstrate the relations

�(r, t) = − 1

4πε0

∫
D

1

R
[∇ξ · P(ξ, t ′)]t ′=t−R/c d3ξ

= 1

4πε0

∫
D

[
R · P(ξ, t − R/c)

R3
+

R · Ṗ(ξ, t − R/c)

cR2

]
d3ξ

A(r, t) = µ0

4π

∫
D

1

R
[∇ξ × M(ξ, t ′)]t ′=t−R/c d3ξ +

µ0

4π

∫
D

1

R
Ṗ(ξ, t −R/c) d3ξ

= −µ0

4π

∫
D

[
R × M(ξ, t − R/c)

R3
+

R × Ṁ(ξ, t − R/c)

cR2

]
d3ξ

+
µ0

4π

∫
D

1

R
Ṗ(ξ, t − R/c) d3ξ.
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Taking into account the expressions of the potentials corresponding to point electric and
magnetic dipoles, these equations prove the following theorem of equivalence: if a neutral
distribution is represented by relations (8), then this distribution is equivalent to spatial electric
and magnetic dipole distributions with the densities P and M. As is well known [9], relations
(8) are very useful for understanding the microscopic nature of the macroscopic electric and
magnetic polarizations of the matter.

The second example is a fundamental formula for the radiation of a localized charge and
current distribution which can be obtained from expansions (3) and (6). Since only the terms
of order 1/r, r → ∞ from the expansion of the fields E and B contribute to the radiation of
a localized charge and current distribution, we need to consider only [10]

Arad(r, t) = µ0

4π

1

r

∫
D

j(ξ, t − R/c) d3ξ.

Thus, the parts of E and B which contribute to the radiation are

Brad(r, t) = 1

c

[
∂Arad

∂t
(r, t)× ν

]
Erad = c[Brad(r, t)× ν] ν = r

r
. (9)

Rewriting equation (6) as

A(r, t) = µ0

4π

∞∑
n=1

(−1)n−1

n!
∇n−1 ·

[
Ṁ
(n)
(t0)× r

cr2
+ M(n) × r

r3

]

+
µ0

4π

∞∑
n=1

(−1)n−1

n!
∇n−1 ·

[
1

r
Ṗ
(n)
(t0)

]
t0 = t − r

c

we see that the terms of the order 1/r are produced only by the time derivative. Finally, one
obtains the following expansion for calculating the radiation [7]:

Arad(r, t) = µ0

4π

1

r

∞∑
n=1

1

n!cn
νn−1 ·

[
dnM(n)(t0)

dtn
× ν

]
+
µ0

4π

1

cr

∞∑
n=1

1

n!cn
νn−1 ·

[
dnP(n)(t0)

dtn

]
.

(10)

This relation gives the explicit contribution of each multipole to the radiation field.
To conclude, we will note that the angular distribution of radiation resulting from (9),

I(ν) = r2

µ0c

(
ν × ∂Arad

∂t

)2

can be used for calculating I(ν) for a point charge directly from the Liénard–Wiechert
potentials [11].

3. Reduction of multipole tensors, the static case

As an exercise, which will be helpful for understanding the new features of the reduction
procedure in the dynamic case, in this section we will consider the static case. We will follow
the presentation given in [6].

In the static case, equations (3) and (6) become

�(r) = 1

4πε0

∞∑
n=0

(−1)n

n!
∇n ·

[
1

r
P(n)

]
= 1

4πε0

∞∑
n=0

(−1)n

n!
P(n) · ∇n 1

r

A(r) = µ0

4π
∇ ×

∞∑
n=1

(−1)n−1

n!
∇n−1 ·

[
M(n)

r

]
= µ0

4π

∞∑
n=1

(−1)n−1

n!
∇n−1 ·

[
M(n) × r

r3

]
and the electric and magnetic fields can be treated independently.
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The symmetric tensor P(n) is reduced to a symmetric traceless tensor P (n) by
transformations which can be written in the following form,

Pi1...in −→ Pi1...in − λ[i1 ...in−2δin−1in] (11)

where λ(n−2) is a symmetric tensor, and the index symbol [i1 . . . in] means the sum over all
the distinct (taking into account the symmetry of λ) permutations of indices i1 . . . in. The
components of the tensor λ are determined in terms of the traces of the tensor P(n). So, for
n = 2 we have the well-known expression

λ = 1

3
Pii = 1

3

∫
D
ξ2ρ d3ξ.

For n = 3, 4, 5 we have

λi = 1

5
Pjji = 1

5

∫
D
ξ2ξiρ d3ξ λij = 1

5 Pkkij − 1
40 Pkkllδij

λijk = 1
9 Pllijk − 1

126 (Pllmmiδjk + Pllmmj δki + Pllmmkδij )

and so on. Maybe it is possible to elaborate symbolic computer programs (using, for example,
REDUCE or MATHEMATICA) for generating these tensors for arbitrary orders.

Since �(1/r) = 0, the static scalar potential � is invariant under the transformations
(11). Indeed, by the transformation (11) we obtain

�(n)(r) −→ �(n)(r)− (−1)n

4πε0n!
∂i1...in

[
1

r
λ[i1 ...in−2δin−1in]

]
where the symbol δ generates the Laplace operator� such that

�(n)(r) −→ �(n)(r)− (−1)nn(n− 1)

8πε0n!
∂i1...in−2�

[
1

r
λi1...in−2

]

= �(n)(r)− (−1)nn(n− 1)

8πε0n!
∇n−2 ·

[
λ(n−2)�

1

r

]
(r �= 0).

The symmetric traceless tensor P (n) can be written as [2]

P (n) = (−1)n

(2n− 1)!!

∫
D
ρ(ξ)ξ2n+1∇n 1

ξ
d3ξ. (12)

Let us now consider the nth-order term from the expansion of the vector potential

A
(n)

i (r) = µ0(−1)n−1

4πn!
εikl∂k∂i1...in−1

(
1

r
Mi1...in−1l

)
.

Since the magnetic nth-order tensor M(n) is symmetric only in the first n − 1 indices, the total
symmetrization of this tensor can be performed by the transformation

Mi1...in −→ M(sym)i1...in = Mi1...in − 1

n

n−1∑
λ=1

[
Mi1...in − Mi1...iλ−1iλ+1...in−1iniλ

]

= Mi1...in − 1

n

n−1∑
λ=1

[
Mi1...iλ−1iλ+1...in−1iλin − Mi1...iλ−1iλ+1...in−1iniλ

]
or

Mi1...in −→ M(sym)i1...in = Mi1...in − 1

n

n−1∑
λ=1

[
M(λ)

i1...in−1iλin
− M(λ)

i1...in−1iniλ

]
(13)



9916 C Vrejoiu

where we use the notation

f
(λ)
i1...ik

= fi1...iλ−1iλ+1...ik . (14)

Defining the (n − 1)th-order tensor N(n−1) by its Cartesian components

Ni1...in−1 = εin−1psMi1...in−2ps = n

n + 1
εin−1ps

∫
D
ξi1 · · · ξin−2ξp(ξ × j)s d3ξ

= n

n + 1

∫
D
ξi1 · · · ξin−2 [ξ × (ξ × j)]in−1 d3ξ

the transformation (13) can be written as

Mi1...in −→ M(sym)i1...in = Mi1...in − 1

n

n−1∑
λ=1

εiλinqN(λ)i1...in−1q
.

Here we again use the notation (14). We write explicitly the modification of the term A
(n)

i (r)

induced by the substitution (13):

A
(n)
i (r) −→ A

(n)
i (r)−

µ0(−1)n−1

4πn!n
εikl∂k∂i1...in−1

[
1

r

n−1∑
λ=1

εiλlqN(λ)i1...in−1q

]

= A
(n)
i (r) +

µ0(−1)n−1

4πn!n

n−1∑
λ=1

εiklεiλql∂k∂iλ∂
(λ)
i1...in−1

[
1

r
N(λ)i1...in−1q

]

and, because εiklεiλql = δiiλδkq − δiqδkiλ ,

A
(n)

i (r) −→ A
(n)

i (r) +
µ0(−1)n−1

4πn!n

n−1∑
λ=1

{
∂k∂i

[
∇n−1 · 1

r
N(n−1)

]
k

− ∂k∂k

[
∇n−1 · 1

r
N(n−1)

]
i

}

such that

A(r) −→ A(r) +
µ0(−1)n(n− 1)

4πn!n
∇n−2 ·�

[
1

r
N(n−1)

]
+ ∇ψ(n)(r) (16)

where

ψ(n)(r) = µ0(−1)n−1(n− 1)

4πn!n
∇n−1 ·

[
1

r
N(n−1)

]
(17)

and, using �(1/r) = 0, we see that the transformation (16) is a gauge transformation.
The reduction of M(n)

(sym) to a symmetric traceless tensor M (n) is achieved by the
transformation

M(sym)i1...in −→ M(sym)i1...in − χ[i1...in−2δin−1in] (18)

where the tensors ξ(n−2) are expressed by the traces of the tensors M(n)

(sym) by the same procedure
as in the case of tensors λ(n−2) from equation (11). Then

Ai + ∂iψ −→ Ai + ∂iψ − µ0(−1)n−1

4πn!
εikl∂k∂i1...in−1

[
1

r
χ[i1...in−2δin−1l]

]
. (19)

In the last sum above, we have n − 1 terms in which l is an index of δ, leading to the null
operator εikl∂k∂l . For the remaining (n − 1)(n − 2)/2 terms, in which l is an index of the
χ-components (in an arbitrary position, due to the symmetry of χ), the symbol δ generates the
Laplace operator�, which gives again zero in the static case. Thus, the static vector potential
is invariant under the transformation (18). Such a reduction of the magnetic multipole tensors
was given in [6] and was also given by Gonzales et al [8], who used a different procedure.
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We note that the symmetric traceless tensor M (n) can be expressed as [6]

Mi1...in = (−1)n+1

(n + 1)(2n− 1)!!

n∑
λ=1

∫
D
ξ2n+1(j × ∇)iλ∂(λ)i1...in

1

r
. (20)

Using the symmetric traceless tensor M (n) in the expansion of A it is readily seen that, outside
the domain D, the magnetic field B = −∇� , where

�(r) = µ0

4π

∞∑
n=1

(−1)n

n!
M (n) · ∇n 1

r
(21)

is the magnetic scalar potential. The multipole expansion of the magnetostatic field using the
magnetic scalar potential was given by Gray [12].

Using expansion (21) for the scalar magnetic potential � , similar formulae for the
electrostatic and magnetostatic interactions can be written. For example, using the symmetric
traceless electric multipole, tensor P (n), the expansion of the electric field is given by [6–8]

E(r) = 1

4πε0

∞∑
n=0

(2n− 1)!!

n!rn+2
[(2n + 1)(P (n) · νn)ν − n(P (n) · νn−1)]

and a similar formula can be written for the magnetic field.
As a second example, let us consider the interaction energy between two static electric

charge distributions ρ and ρ ′ with disjoint supports suppρ ⊂ D, supp ρ ′ ⊂ D′ andD∩D′ = ∅.
The electrostatic interaction energy can be written as

W
(e)
int = 1

4πε0

∞∑
n=0

∞∑
m=0

(−1)n

m!n!
(P (n) · ∇n)(P ′(m) · ∇m)

1

r
.

Here the nm term represents the interaction energy W(n,m)
int between a point-like nth-order

electric multipole, placed in the origin point O ∈ D, and a point-like mth-order electric
multipole, placed in O ′ ∈ D′. In these formulae, r is the position vector of O ′. By recursive
induction one may show that [6, 7]

W
(n,m)
int = (−1)m

4πε0m!n!rn+m+1

×
min(n,m)∑
k=0

(−1)kk![2(m + n− k)− 1]!!CknC
k
m(ν

n−k · P (n)) · (P ′(m) · νm−k)

and, obviously, similar expressions are obtained in the magnetostatic case.

4. Reduction of multipole tensors, the dynamic case

We look for transformations of the first N electric and magnetic multipole tensors which satisfy
the condition that the corresponding sums for E and B, i.e.

∑
n�N E(n),

∑
n�N B(n), remain

unchanged. This condition will be fulfilled if the corresponding sums for the potentials� and
A are modified only by a gauge transformation.

Since, as we will see below, the reduction of the multipole tensors of a given order n
generates modifications of the multipole tensors of the lower orders, we suppose only that P(n)

is fully symmetric and M(n) is symmetric in the first n− 1 indices.
Let us first consider the modification of the vector potential A by the transformations (13)

which lead to a fully symmetric magnetic multipole tensor M(n)

(sym). Due to the symmetry in the
first n− 2 indices of the tensor (15) and

� f (t − r/c)

r
= 0 r �= 0
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the new vector potential is given by an expression which is a generalization of equation (16),

A −→ A′ = A + ∇ψ(n) +
µ0(−1)n(n− 1)

4πc2n!n
∇n−2 ·

[
1

r
N̈
(n−1)

(t0)

]

where ψ(n) is given by equation (17). Here

Ni1...in−1 = εin−1psMi1...in−2ps (22)

and the representation by the integral from (15) is verified only if M(n) is given by
relation (5).

We may obtain a gauge transformation of the scalar potential represented by � −→
�− ∂ψ(n)/∂t changing the (n− 1)th-order electric multipole tensor:

P(n−1) −→ P(n−1) + δP(n−1) : δP(n−1) = −n− 1

c2n2
Ṅ
(n−1)

. (23)

On the other hand, the transformation (23) produces an alteration of the vector potential A′:

A′ −→ A′ − µ0(−1)n(n− 1)

4πc2n!n
∇n−2 ·

[
1

r
N̈
(n−1)

(t0)

]

the resulting transformation of the potentials being A −→ A + ∇ψ(n),� −→ �− ∂ψ(n)/∂t

such that to the transformations (13) and (23) corresponds a gauge transformation of the
potentials� and A with ψ(n) given by equation (17).

For the sake of simplicity, in the following, we will use the same notations,� and A, for
the new potentials.

After the reduction of the magnetic tensor M(n) to a symmetric one, we have to perform
the reduction to a traceless tensor M̃

(n) by transformations of the type (18). The alteration
of the vector potential is represented by equations (19) with χ(t − r/c) and repeating the
considerations from the static case (this time �[χ(t0)/r] = χ̈/c2) one obtains

A
(n)

i (r, t) −→ A
(n)

i (r, t)− µ0(−1)n−1

4πn!

(n− 1)(n− 2)

2
εikl∂k∂i1...in−3�

[
1

r
χi1...in−3l (t0)

]

= A
(n)

i (r, t)− µ0(−1)n−1(n− 1)(n− 2)

8πn!c2
εikl∂k

{
∇n−3 ·

[
1

r
χ̈(n−2)(t0)

]}
l

= A
(n)

i (r, t)− µ0(−1)n−1(n− 1)(n− 2)

8πn!c2

{
∇ ×

[
∇n−3 ·

(
1

r
χ̈(n−2)(t0)

)]}
i

and

A −→ A − µ0(−1)n−1(n− 1)(n− 2)

8πc2n!
∇ ×

{
∇n−3 ·

[
1

r
χ̈(n−2)

]}
. (24)

The supplementary term from equation (24) can be set off by the following transformation of
M(n−2):

M(n−2) −→ M′(n−2) = M(n−2) +
(n− 2)

2c2n
χ̈(n−2).

The last step consists in the reduction of the symmetric nth-order electric multipole tensor
P(n) to a traceless one by transformations of the type (11). The alterations of the potentials are
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given by

�(r, t) −→ �(r, t)− (−1)n

4πε0n!
∂i1...in

[
1

r
λ[i1 ...in−2δin−1in](t0)

]

= �(r, t)− (−1)nn(n− 1)

8πε0n!
∇n−2 ·

{
�

[
1

r
λ(n−2)(t0)

]}

= �(r, t)− (−1)nn(n− 1)

8πε0c2n!
∇n−2 ·

[
1

r
λ̈(n−2)(t0)

]

A(r, t) −→ A(r, t)− µ0(−1)n−1

4πn!
∂i1...in−1

[
1

r
λ̇[i1...in−2(t0)δin−1i]

]
ei

= A(r, t) − µ0(−1)n−1(n− 1)(n− 2)

8πn!
∂i1...in−3

{
�

[
1

r
λ̇
(n−2)
i1...in−3i

(t0)

]}
ei

− µ0(−1)n−1(n− 1)

4πn!
∂i∂i1...in−2

[
1

r
λ̇
(n−2)
i1...in−2

(t0)

]
ei

= A(r, t)− µ0(−1)n−1(n− 1)(n− 2)

8πc2n!
∇n−3 ·

[
1

r

...

λ
(n−2)

(t0)

]

− µ0(−1)n−1(n− 1)

4πn!
∇ ·

{
∇n−2 ·

[
1

r
λ̇(n−2)(t0)

]}
.

We perform now the transformation

P(n−2) −→ P(n−2) +
a

2c2
λ̈(n−2) (25)

with a parameter a which will be chosen adequately. The results of the transformations (11)
and (25) are

� −→ � +
(−1)n(a − 1)

8πε0c2(n− 2)!
∇n−2 ·

[
1

r
λ̈(n−2)(t0)

]

A −→ A − µ0(−1)n−1(n− 1)

4πn!
∇ ·

{
∇n−2 ·

[
1

r
λ̇(n−2)(t0)

]}

+

(
a − n− 2

n

)
µ0(−1)n−1

8πc2(n− 2)!
∇n−3 ·

[
1

r

...

λ
(n−2)

(t0)

]
.

Choosing

a = n− 2

n

one obtains the following gauge transformations

A −→ A + ∇ψ ′(n) � −→ �− ∂

∂t
ψ ′(n)

with

ψ ′(n) = µ0(−1)n(n− 1)

4πn!
∇n−2 ·

[
1

r
λ̇(n−2)(t0)

]
.

The transformation (23) alters the symmetry properties of the (n− 1)th electric multipole
tensor because of δP(n−1) which is symmetric only in the first n− 2 indices. To restore the full
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symmetry of the (n− 1)th electric moment, we perform the transformation of P(n−1) + δP(n−1)

by

δPi1...in−1 −→ δPi1...in−1 +
1

c2n2

n−2∑
λ=1

[
Ṅi1...in−1 − Ṅ

(λ)

i1...in−1iλ

]
.

By introducing the tensor N (n−2) with components

Ni1...in−2 = εin−2psNi1...in−3ps

the transformation of δP(n−1) can be written as

δPi1...in−1 −→ δPi1...in−1 +
1

c2n2

n−2∑
λ=1

εiλin−1qṄ (λ)

i1 ...in−2q
. (26)

If M(n) is given by equation (5), we can write

Ni1...in−3in−2 = − n

n + 1

∫
D
ξ2ξi1 . . . ξin−3(ξ × j)in−2d

3ξ.

It is a simple matter to see that the transformations (26) do not alter the scalar potential�, but
the vector potential is transformed by

A −→ A − µ0(−1)n(n− 2)

4πc2n!n
∇ ×

{
∇n−3 ·

[
1

r
N̈ (n−2)(t0)

]}
.

This alteration of the vector potential may be set off by the transformation

M′(n−2) −→ M′(n−2) − (n− 2)

c2n2(n− 1)
N̈ (n−2) (27)

which preserves the symmetry properties of M(n−2).
The transformations (26) and (27) must be considered for applying the procedure of

reduction in the (n − 1)th and (n − 2)th orders, respectively.

5. Conclusions

We summarize the results of the last section by the following statements.

(1) The reduction of the magnetic nth-order multipole tensor to a symmetric traceless one by
the transformation

Mi1...in −→ Mi1...in − 1

n

n−1∑
λ=1

εiλinqN(λ)i1...in−1q
− χ[i1...in−2δin−1in]

together the modifications of the electric (n − 1)th order and of the magnetic
(n − 2)th-order multipole tensors

Pi1...in−1 −→ Pi1...in−1 − n− 1

c2n2
Ṅi1 ...in−1 (28)

Mi1...in−2 −→ Mi1...in−2 +
(n− 2)

2c2n
χ̈i1...in−2 (29)

leads to a gauge transformation of the potentials� and A.



Electromagnetic multipoles in Cartesian coordinates 9921

(2) The reduction of the electric nth-order multipole tensor to a symmetric traceless one

Pi1...in −→ Pi1...in − λ[i1...in−2δin−1in]

together the transformation of the electric (n − 2)th-order multipole tensor

Pi1...in−2 −→ Pi1...in−2 +
n− 2

2nc2
λ̈i1...in−2 (30)

leads also to a gauge transformation of the potentials.

The tensor N(n−1) is given by equation (22), χ(n−2) is expressed in terms of the traces of
the tensor M(n)

(sym) and λ(n−2) is expressed in terms of the traces of P(n).
The reduction procedure described above do not alter the sums∑

k�n
E(k)

∑
k�n

B(k)

but some terms from these sums are altered, this fact being physically irrelevant. Concerning
the potentials, the corresponding sums of multipole terms are modified only by gauge
transformations with ψ-functions which are solutions of the homogeneous wave equation
such that the Lorenz condition is preserved1.

The procedure applied for the order n can be applied in all the lower orders. We point out
that the transformations (28), (29) and (30) together with the transformations (26) and (27)
do not change the symmetry properties used in the nth-order; hence, the procedure may be
applied step by step for all the lower orders.

If we begin the reduction from a given order N, then the results of the reductions of P(N)

and M(N) are the tensors P (N) and M (N) given by equations (12) and (20). For n < N , the
nth-order reduced multipole tensors may differ from P (n) and M (n) by terms induced by the
reductions from the previous steps. These last terms give contributions to the potentials and
fields expressed by toroidal moments and mean radii of various orders.

We give a simple example of such a reduction and we will see how the toroidal moments
appear as a result of such an approach.

By reducing the magnetic moments beginning from the third order and the electric ones
from the fourth order, and considering the final results for the electric multipole tensors, we
obtain

Pijkl → Pijkl Pijk → Pijk

but, concerning the electric dipolar and quadrupolar moments, the following reduced tensors
are obtained:

P̃i = Pi +
1

6c2
λ̈i − 1

4c2
Ṅi

P̃ij = Pij − 1

9c2
(Ṅij + Ṅji ) +

1

4c2

(
λ̈ij − 1

3
λ̈kkδij

)
. (31)

Here

Nik = 3

4

∫
D
ξi[ξ × (ξ × j)]k d3ξ Ni = 2

3

∫
D

[ξ × (ξ × j)]i d3ξ

λij = 1

7

∫
D
ξ2ξiξj ρ d3ξ − 1

70

∫
D
ξ4ρ d3ξδij λi = 1

5

∫
D
ξ2ξiρ d3ξ (32)

Pi =
∫
D
ξiρ d3ξ Pij =

∫
D

(
ξiξj − 1

3
ξ2δij

)
ρ d3ξ.

1 The condition ∇ .A + ε0µ0∂�/∂t = 0 was given in 1867 by the Danish scientist Ludwig Lorenz, not by the Dutch
scientist H A Lorentz, but this constraint was generally misattributed to H A Lorentz (see [15]). I am very grateful to
an anonymous referee for bringing this to my attention.



9922 C Vrejoiu

Inserting (32) in (31) and taking into account the continuity equation verified by ρ and j, we
obtain

P̃i = Pi − 1

c2
Ṫi P̃ij = Pij − 1

c2
Ṫij (33)

where

Ti = 1

10

∫
D

[ξi(ξ · j)− 2ξ2ji] d3ξ (34)

Tik = 1

42

∫
D

[4ξiξk(ξ · j)− 5ξ2(ξijk + ξkji) + 2ξ2(ξ · j)δik] d3ξ (35)

are the toroid dipole and quadrupole tensors, respectively [13, 14].
Using (33) in equation (10), we can calculate the toroidal multipole contributions to the

radiation field.
Applying the reduction for n → ∞, it is clear that one obtains infinite sums representing

the multipole tensors and, maybe, it is a formidable task to give a general rule in Cartesian
coordinates. As is known, this task is accomplished in spherical coordinates obtaining the
multipole moments represented by integrals of the spherical Bessel functions.
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